2016年考研數(shù)學一大綱原文
【考研派 okaoyan.com】 為大家提供2016年考研數(shù)學一大綱原文,更多考研資訊請關注我們網(wǎng)站的更新!敬請收藏本站。
考研的道路是漫長的,是無比艱辛的??佳械娜舜蠖鄶?shù)是焦躁的,迷茫的,也是孤獨的。特別是身邊沒有研友陪伴的時候那種孤獨感只有自己才能體會。一、函數(shù)、極限、連續(xù)
1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應用問題的函數(shù)關系.
2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.
3.理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.
4.掌握基本初等函數(shù)的性質及其圖形,了解初等函數(shù)的概念.
5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關系.
6.掌握極限的性質及四則運算法則.
7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法.
8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.
9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型.
10.了解連續(xù)函數(shù)的性質和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質.
二、一元函數(shù)微分學
1.理解導數(shù)和微分的概念,理解導數(shù)與微分的關系,理解導數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導數(shù)的物理意義,會用導數(shù)描述一些物理量,理解函數(shù)的可導性與連續(xù)性之間的關系.
2.掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則,掌握基本初等函數(shù)的導數(shù)公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分.
3.了解高階導數(shù)的概念,會求簡單函數(shù)的高階導數(shù).
4.會求分段函數(shù)的導數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導數(shù).
5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理.
6.掌握用洛必達法則求未定式極限的方法.
7.理解函數(shù)的極值概念,掌握用導數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應用.
8.會用導數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間 內(nèi),設函數(shù) 具有二階導數(shù).當 時, 的圖形是凹的;當 時, 的圖形是凸的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形.
9.了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑.
三、一元函數(shù)積分學
1.理解原函數(shù)的概念,理解不定積分和定積分的概念.
2.掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法.
3.會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分.
4.理解積分上限的函數(shù),會求它的導數(shù),掌握牛頓-萊布尼茨公式.
5.了解反常積分的概念,會計算反常積分.
1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應用問題的函數(shù)關系.
2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.
3.理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.
4.掌握基本初等函數(shù)的性質及其圖形,了解初等函數(shù)的概念.
5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關系.
6.掌握極限的性質及四則運算法則.
7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法.
8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.
9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型.
10.了解連續(xù)函數(shù)的性質和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質.
二、一元函數(shù)微分學
1.理解導數(shù)和微分的概念,理解導數(shù)與微分的關系,理解導數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導數(shù)的物理意義,會用導數(shù)描述一些物理量,理解函數(shù)的可導性與連續(xù)性之間的關系.
2.掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則,掌握基本初等函數(shù)的導數(shù)公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分.
3.了解高階導數(shù)的概念,會求簡單函數(shù)的高階導數(shù).
4.會求分段函數(shù)的導數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導數(shù).
5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理.
6.掌握用洛必達法則求未定式極限的方法.
7.理解函數(shù)的極值概念,掌握用導數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應用.
8.會用導數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間 內(nèi),設函數(shù) 具有二階導數(shù).當 時, 的圖形是凹的;當 時, 的圖形是凸的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形.
9.了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑.
三、一元函數(shù)積分學
1.理解原函數(shù)的概念,理解不定積分和定積分的概念.
2.掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法.
3.會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分.
4.理解積分上限的函數(shù),會求它的導數(shù),掌握牛頓-萊布尼茨公式.
5.了解反常積分的概念,會計算反常積分.
文章來源:2016年考研數(shù)學一大綱原文